Coagulation-mediated hypoxia and neutrophil-dependent hepatic injury in rats given lipopolysaccharide and ranitidine.
نویسندگان
چکیده
Idiosyncrasy-like liver injury occurs in rats cotreated with nonhepatotoxic doses of ranitidine (RAN) and bacterial lipopolysaccharide (LPS). Hepatocellular oncotic necrosis is accompanied by neutrophil (PMN) accumulation and fibrin deposition in LPS/RAN-treated rats, but the contribution of PMNs to injury has not been shown. We tested the hypothesis that PMNs are critical mediators of LPS/RAN-induced liver injury and explored the potential for interaction between PMNs and hemostasis-induced hypoxia. Rats were given either LPS (44.4 x 10(6) endotoxin units/kg) or its vehicle and then RAN (30 mg/kg) or its vehicle 2 h later. They were killed 3 or 6 h after RAN treatment, and hepatocellular injury was estimated from serum alanine aminotransferase activity and liver histopathology. Plasma PMN chemokine concentration and the number of PMNs in liver increased after LPS treatment at 3 h and were not markedly altered by RAN cotreatment. Depletion of circulating PMNs attenuated hepatic PMN accumulation and liver injury and had no effect on coagulation system activation. Anticoagulation with heparin attenuated liver fibrin deposition and injury in LPS/RAN-treated rats; however, heparin had little effect on liver PMN accumulation or plasma chemokine concentration. Liver hypoxia occurred in LPS/RAN-cotreated rats and was significantly reduced by heparin. In vitro, hypoxia enhanced the killing of rat hepatocytes by PMN elastase and shortened its onset, indicating a synergistic interaction between PMNs and hypoxia. The results suggest that PMNs are involved in the hepatocellular injury caused by LPS/RAN-cotreatment and that hemostasis increases sensitivity to PMN-induced hepatocellular injury by causing liver hypoxia.
منابع مشابه
Ranitidine reduces ischemia/reperfusion-induced liver injury in rats by inhibiting neutrophil activation.
We previously reported that ranitidine, an H(2) receptor antagonist, inhibited neutrophil activation in vitro and in vivo, contributing to reduce stress-induced gastric mucosal injury in rats. In this study, we examined whether ranitidine would reduce ischemia/reperfusion-induced liver injury, in which activated neutrophils are critically involved, in rats. We also examined the effect of famoti...
متن کاملThe role of tumor necrosis factor alpha in lipopolysaccharide/ranitidine-induced inflammatory liver injury.
Exposure to a nontoxic dose of bacterial lipopolysaccharide (LPS) increases the hepatotoxicity of the histamine-2 (H2) receptor antagonist, ranitidine (RAN). Because some of the pathophysiologic effects associated with LPS are mediated through the expression and release of inflammatory mediators such as tumor necrosis factor alpha (TNF), this study was designed to gain insights into the role of...
متن کاملCoagulation-dependent gene expression and liver injury in rats given lipopolysaccharide with ranitidine but not with famotidine.
In an animal model of drug idiosyncrasy, rats cotreated with nonhepatotoxic doses of lipopolysaccharide (LPS) and ranitidine (RAN) develop hepatocellular injury, whereas rats treated with LPS and famotidine (FAM) do not. The coagulation system and neutrophils (PMNs) are requisite mediators of LPS/RAN-induced liver injury. We tested the hypothesis that unique gene expression in LPS/RAN-treated r...
متن کاملNeither platelet activating factor nor leukotrienes are critical mediators of liver injury after lipopolysaccharide administration.
The intravenous administration of lipopolysaccharide (LPS) to rats results in liver lesions characterized by the infiltration of both platelets and neutrophils into the liver and by midzonal hepatocellular necrosis. The liver injury is dependent on neutrophils, platelets and the coagulation system, as removal or inhibition of any of these components inhibits the development of hepatocellular ne...
متن کاملNeutrophil interaction with the hemostatic system contributes to liver injury in rats cotreated with lipopolysaccharide and ranitidine.
Cotreatment of rats with nontoxic doses of ranitidine (RAN) and lipopolysaccharide (LPS) causes liver injury, and this drug-inflammation interaction might be a model for idiosyncratic adverse drug responses in humans. Both polymorphonuclear neutrophils (PMNs) and the hemostatic system have been shown to be important in the injury. We tested the hypothesis that PMNs cause liver injury by interac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 314 3 شماره
صفحات -
تاریخ انتشار 2005